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Earth tides, ocean tides and tidal loading

By W. E. FARRELL
Cooperative Institute for Research in Environmental Sciences,?
University of Colorado, Boulder, Colorado 80302, U.S.A.

\

The distortion of the Earth’s gravitational potential field by the M, ocean tide has been calculated,
accounting for both the elastic deformation of the Earth and the self potential of the water. The potential
field generated by the ocean tide is almost everywhere greater than a tenth, and over much of the ocean
ishalfaslarge as the lunar driving potential itself, and may have a significant influence on the tidal motion.
Load tides in tilt, strain, and vertical acceleration also arise from the deformation of the Earth by the ocean
tide. These load tides are probably of more geophysical and oceanographic interest than the body tides
raised by the Sun and Moon.
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INTRODUCTION

Earth tides are interesting because of ocean tidal loading. If the Earth had no ocean, or if the
tide in the ocean was in equilibrium with the tide potential, then a few accurate measurements
of the solid Earth tide would exhaust most of the interest in this classical geophysical discipline.
A small number of observations would supply the handful of constants necessary to describe the
Earth and ocean tides everywhere on such an ideal world. (There is a tacit assumption here
that the Earth’s lateral heterogeneity has only a small effect on the tides.)

Earth tides on the real world are more complicated, however, because they are significantly
perturbed by the loading of the highly irregular tides in the world’s oceans. On the other hand,
the ocean tide is itself affected by the deformation of the sea floor under the weight of the tidal
water. This deformation can create forces, arising from the perturbation of the Earth’s gravity
field, which are comparable to the original astronomical driving force. Because of the intimate
relation between Earth tides and ocean tides, neither subject can be completely understood
without consideration of the other, and we are just now beginning this geophysical-oceanographic
collaboration.

A tide is a complicated phenomenon, and the first step in any investigation of the tides is to
resolve the time dependence into its constituent frequencies by harmonic analysis. The various
frequencies are related to a few basic periodicities in the motion of the Earth, Moon and Sun,
and harmonic analysis of the tides is useful because the ocean tide, the equilibrium earth tide and
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the load tide are all linear functions of the astronomical driving force. There are, in fact, some
areas, such as the Gulf of Alaska, where the ocean tide (and presumably the load tide) is some-
what nonlinear, but these regions are few and can be ignored for the present. Unless it is stated
otherwise, we assume such a harmonic expansion and most of the following discussion applies in
particular to the largest tidal constituent, the semidiurnal lunar part with period 12.42 h
(M,). Furthermore, all functions are complex, since they have both amplitude and phase.
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2. OCEAN TIDES ON AN ELAsTIC EARTH

In every important harbour the tide is accurately known and can be precisely predicted
years in advance. In the deep sea, however, the tide is almost unknown, with the few exceptions
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254 W.E.FARRELL

where it has been measured with ocean bottom recorders. There is virtually no similarity
between the tides on opposite shores of an ocean basin and in general maps showing amplitudes
and phases of deep sea tides are very uncertain. The tide is spatially irregular because the oceans
resonate to forces of tidal periodicity, and the large scale-length driving force excites small
scale-length oscillations around a dozen nodal points, called amphidromes.

Until the ocean tide has been mapped experimentally, it is necessary to adopt an ocean tide
model in order to study the Earth tide-ocean tide interaction. I am working with numerical
models calculated by Hendershott (1972) who solves the Laplace tidal equations (L.t.e.)
subject to various boundary conditions with a finite difference scheme. The usual boundary
condition is that the calculated tide matches the observed tide along all coastlines, but this has
the severe limitation that there are few tide measurements on one of the most important bound-
aries, the coast of Antarctica. Hendershott assumes the tide is nondissipative. Other calculations
have been presented by Pekeris & Accad (1970), Bogdanov & Magarik (1967), and Tiron,
Sergeev & Michurin (1967). A review of empirical and numerical models of the ocean tides has
recently been given by Hendershott & Munk (1970).

(a) The Laplace tidal equations

The Laplace tidal equations, expressing the conservation of mass and momentum, are not
separable because of the Coriolis force associated with the Earth’s rotation. They can be com-
bined into the single equation

L(Z) = io [a(Uyfg) + (Pg)], (1)
where L( ) is an elliptic, partial differential operator, and o the radian frequency (Hendershott
1972). The dependent variable is

Z = H—a(U,[g) - (P[g), (2)

with H the water amplitude measured with respect of the deformed sea floor. Along coast lines
Z is fixed because H must be the observed tidal amplitude. In equations (1) and (2), U, is the
potential of the astronomical driving force (at latitude 6 and east longtidue ¢, U,[g = 0.247
cos? 0 cos (0f+2¢) m for the lunar M, tide) and

where k, & 0.3 and %, ~ 0.6 are the dimensionless Love numbers describing the Earth’s
elastic yielding to the equilibrium potential U,. P is the self potential of the tidal water plus the
potential field created by the Earth’s elastic deformation under the weight of the tide. By fixing
ky = hy = P = 0, equation (1) applies to the tides of a massless ocean on a rigid Earth. Note
that the Earth’s elastic yielding enters into (1) in two distinct ways: the equilibrium Earth tide
reduces the effective astronomical potential by 30 9%,; and the elastic loading of the sea floor
enters into P.

More or less realistic solutions to (1) can be readily obtained for oceans of irregular outline and
variable depth when P = 0. It is more difficult to account for self attraction and loading, how-
ever, because P is an integral function of the unknown solution H. Let r, #’ be position vectors on
the surface of the Earth, p the density of sea water and G a gravitational potential Green func-
tion. Then P can be written as the convolution integral

P(r) =p f f _G(r=rH(r)dd, (4)
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The Green function G can be calculated for any radially stratified Earth model by solving the
elastic and Poisson equations, with the boundary condition that a unit mass press on the Earth’s
free surface (Farrell 19725). In terms of the load Love numbers £, and £,

G(0) = 28 3 (14+k,—hy)Py(cos 0), (5)
My n=0
with a, g, and my the Earth’s radius, surfacc gravity and total mass.

Given the Green function G, equation (1) is solved iteratively. Define a sequence of functions
(H° HY, ...), and (P% P1, ...) with P® = 0 and forn > 1

P = GxHn, (6)

where # is the convolution operator. For each P”, equation (1) is solved to yield Z* and hence by
(2) H™. From H™, P*+1is found and the process repeated until two successive solutions are similar
enough. We hope this method converges.

(b) A preliminary convolution

One of Hendershott’s first-order solutions of the L.t.e., computed on a 6° Mercator grid,
with P = 0, was used to find P*. The gravitational potential perturbation caused by the tide
(plotted in Hendershott & Munk 1970) is shown in figure 1, where the Green function for the

al,lg

Ficure 1. The magnitude of P*[g for one M, ocean tide model. Values of the magnitude of a U, g, which is constant
along lines of latitude, are shown in the margins for comparison. Contour levels in centimetres. The Indian
ocean high is unrealistically large by a factor of 2 and is caused by the large tidal amplitudes there in the
ocean tide model. The phase angles of P[g and aU,[g also depend on location, but lines of constant phase are
not shown here.

Gutenberg—Bullen Earth with an oceanic upper mantle has been used in the convolution. Details
of the calculation of the various Green functions for evaluating the response of earth models to
surface mass loads were reviewed by Farrell (19725), but that article was concerned with the
displacements, accelerations, tilts, and strains, not with the gravitational potential perturbation.

A study of the vertical acceleration due to tidal loading (Farrell 1972a), showed that it was
necessary for the tide to conserve mass. The original tide model did not, but it can be adjusted
so there is no flow of water across the ocean boundaries by subtracting 6.8 exp(—i56) cm of
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256 W. E.FARRELL

water from the tide. An alternative method of achieving the same result is to reject the Legendre
harmonic of degree 0 from the convolution. This is easily done by modifying the Green
function so that the sum in equation (5) starts at = 1 instead of » = 0. The convolution has
been done both ways and P! evaluated with the modified tide is very similar to P! evaluated with
the modified Green function. The slight differences are due to the » > 1 harmonics of the
ocean function (Munk & MacDonald 1960, p. 289) which contribute to the modified tide inte-
gral but not to the modified Green function integral. The modified Green function was used to
calculate figure 1.

T I I [

20— potential Green functions —
elastic
(5]
"g 10~
= Newtonian
[
g
&
(5}
2
= 0
g
] | | |
0.01 0.1 1 10 100
distance/deg

Ticure 2. The elastic and Newtonian parts of the gravitational potential Green function. The amplitudes have
been multiplied by (af]g) x 1012 (a is 6.371 x 106 m, 0 is distance in radians, g is 9.8 ms~2) to give relative
amplitudes. Omitting the Legendre degree 0 harmonic from the sum gives the two dashed curves. The sum of
the two dashed curves is the modified Green function used to produce figure 1.

The surprising result from these calculations is the magnitude of P!/g compared to alU,/g. In
the oceans P1/g is almost always greater than a tenth aU,/g, and at high latitudes and where the
ocean tide is large or of constant phase it can equal the lunar forcing term. We do not yet
know the effect this will have on the iteration for ™.

A rapid scheme is necessary to calculate the convolution integral. P is needed at about 2000
points on this 6° grid, so each two-dimensional convolution integral must be found quickly.
Use of Simpson’s or some other integration rule for each point would be a lengthy procedure.
Instead, G is integrated once across disks located at several distances 7, and from these few
integrations a table of disk factors is constructed. The entries in this table are corrections which
must be applied to the Green function when the load originates in a disk of radius & whose
centre is distance r away. Around each ocean grid point, then, a disk is constructed within which
the tide is assumed to be uniform. The convolution integral is now found by interpolating tabular
values of the Green function and disk factors. When afr < 0.1, it is sufficient to assume the
finite load originates at a point, and the geometric correction can be dispensed with.

The Green function, suitably normalized, is plotted in figure 2. To exhibit the relative impor-
tance of the self attraction of the water (the Newtonian part of ) versus the yielding of the Earth
(the elastic part of G), the two terms are plotted separately in the figure. The elastic and
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‘Newtonian effects are seen to be equal at a distance of about 3°. Closer than this to the load, the

elastic term dominates G, and at further distances G is mostly the self attraction of the water.
When G is convolved with the tide, about half the potential perturbation P is due to the nearby
(< 38°) elastic deformation and about half arises from the integrated Newtonian effect. The
elastic Green function itself is partly due to the perturbation in the Earth’s gravity field, the
k, sum in equation (5), and partly due to the vertical deformation of the surface, the %, sum.
The latter is the most important, and nowhere does the %, term contribute more than 10 %,

4
9
2-———— —_
1
L
:«: radius
~
S
1
inside outside
1 | ] I 1 I
0 05 1 0.5 0

relative distance

Ficure 3. Disk factors obtained by integrating the gravitational potential Green function across disks of several
radii a (degrees) centred at various distances 7. When r < «, the inside case, the relative distance is 7/, and
the disk factor is the integral divided by G(¢). When r > «, the outside case, the relative distance is ot/r and
the integral is divided by G(r) to obtain the disk factor. The curve labelled 0° applies to ¢ < 10~% degrees,
and is the half space limit.

to the elastic Green function. The dashed curves in figure 1 show the modified Green functions,
obtained by subtracting agPy(cos 0)[/my and —aghy Py(cos 0)[myg (kg = 0, hy = —0.134) from
the two responses.

The Green function G is integrated across circular disks of varying radii « to get the disk
factors plotted in figure 3. When r > « the integral is divided by G(r) to get the correction, but
when 7 < a, the integral is normalized by G(a). The curve for & = 0 is the relative response for
a disk load on a half-space, and is the limit towards which the other curves tend.

3. EARTH TIDES AND TIDAL LOADING

The tilt, strain and gravity changes arising from the deformation of the Earth by ocean tide
loads are easily measured with modern geophysical instruments. This is particularly true along
coastlines and on ocean islands, but even in the interior of a continent the ocean tide can cause
a 2%, perturbation in the gravity tide (Kuo, Jachens, Ewing & White 1970). The geophysical
effects of any ocean tide model are found by evaluating the convolution integral (equation (4)),
where G is the appropriate Green function for some Earth model. Farrell (19725) has tabulated
for three gravitating and radially stratified Earth models the Green functions for displacement,
tilt, vertical acceleration and strain.
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Numerous quantitative studies of this type have shown how well ocean loading accounts for
most of the irregularities in the Earth tides (Farrell 1970; Kuo ef al. 1970; Prothero & Goodkind
1972; Beaumont & Lambert 1972). Near oceans the load perturbation can reach 10 %, of the
equilibrium gravity tide, but for strain and tilt the load tide may equal or vastly exceed the
equilibrium tide. On the other hand, the tilt and strain perturbations decrease more rapidly
inland than the gravity perturbation because the r—2 tilt and strain Green functions are more
localized than the 7~ gravity Green function.

To study the large coastal loads, which are generated predominately by the tide immediately
offshore, the adjacent ocean tide must be modelled on a denser grid than is required for global
studies. The best procedure is probably to patch offshore tide models (Munk, Snodgrass &
Wimbush 1970) into the global model, when near shore data are available. It is also desirable
to use the Green functions appropriate to the local Earth structure. The far field load response
is insensitive to the near surface properties of the Earth, so the Green function for the Gutenberg—
Bullen or some other standard earth model can be taken at distances beyond 10°, regardless of
the local Earth structure, and only the near field response needs to be recalculated. This can be
adequately done ignoring the Earth’s sphericity and the self gravitational forces.

4. FUTURE PROSPECTS

The traditional use of Earth tides has been to study the Earth’s deformation under the lunar
and solar body forces, and from the observed deformation to infer the Love numbers Ay, £y, /.
Since ks, £y, [, depended on Earth structure, precise experimentally observed values for these
constants would limit the class of acceptable Earth models. But the Love numbers are quite
insensitive to Earth structure, and tell little about the Earth’s interior that is not much more
accurately inferred from seismic body wave and free oscillation data. Even observations of the
anomalous sidereal K tide, which is affected by the core-mantle coupling, test more the mathe-
matical theory of the coupling than the Earth model used in the theory. In these attempts to get
accurate observations of the Love numbers, ocean load effects are an undesirable perturbation in
the equilibrium body tide, which one attempts to remove by spatial averaging. Ocean loads,
however, are world wide, and until the Earth tides have been measured many places on all the
continents, there may always be a bias in these averaged Love numbers.

Much contemporary Earth tide research is turning from the study of the equilibrium body
tide to the study of the load tide. Even here, most of the progress has merely been the demon-
stration that reasonable ocean tides placed on realistic Earth models produce load tides that do
not wildly disagree with observation. In general, the configuration of the ocean tide is more
poorly known than the load response of the Earth, so before the geophysical problem is tackled,
it is necessary to have improved ocean tide models. Load tide studies can perhaps assist the
oceanographers in this, because an acceptable ocean tide model must reproduce the geophysi-
cally observed load tides. A trivial constraint was determined by Farrell (19724), who showed
the ocean tide must conserve mass to explain several gravity tide observations. In terms of the
spherical harmonic expansion of the tide, this means the coefficient of order 0 must vanish.
A non-trivial constraint on the tides would be limits, determined geophysically, on the degree 2
coefficients of the tide. There are ten numbers to be determined, five each for the real and
imaginary part of the tide, and from a particular two of them the dissipation of lunar tidal energy
in the oceans can be found. This could best be done from a series of observations in the interiors
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of the continents, using the distance from the sea to filter out the load of small scale, local tides.
On the other hand, a programme of coast-line and island observations is most useful for studying
the tides in a particular ocean basin. Concurrent sea-floor recordings of the ocean tides would
be valuable in interpreting the geophysical data.

In two unusual areas, the Bay of Fundy and the Irish Sea, the ocean tide is large and modera-
tely well known. The tilt and gravity load tides are large near both regions (Beaumont &
Lambert 1972; Farrell 1970). On the basis of tilt observations, Beaumont & Lambert (1972)
have already been able to reject some proposed models of the local crustal structure. Their
use of the finite element method in calculating the Green functions is attractive because it can
easily handle laterally heterogeneous Earth models.

Much of this work has been done in close collaboration with Myrl Hendershott, who sugges-
ted the iterative procedure for solving the tide equations. The research has been supported by
the National Science Foundation.
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